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Abstract. Associative memories have a number of properties, including
a rapid, compute efficient best-match and intrinsic noise tolerance, that
make them ideal for many applications. However, a significant bottleneck
to the use of associative memories in real-time systems is the amount
of data that requires processing. Notwithstanding, Alfa-Beta Associa-
tive Memories have been widely used for color matching in industrial
processes [1], text translation [2] and image retrieval applications (3]
The aim of this paper is to present the work that produced a dedi-
cated hardware design, implemented on a field programmable gate array
(FPGA) that applies the Alfa-Beta Associative Memories model for pat-
tern recognition tasks. Along the experimental phase, performance of
the proposed associative memory architecture is measured by learning
large sequences of symbols and recalling them successfully. As a resuit,
a simple but efficient embedded processing architecture that overcomes
various challenges involved in pattern recognition tasks is implemented
on a Xilinx Spartan3 FPGA.

Keywords: Associative Memories, FPGA, Pattern Recognition, Recon-
figurable Logic.

1 Introduction

An associative memory M is a system that relates input patterns and output
patterns as follows: z — — y with z and y, respectively, the input
and output pattern vectors. Each input vector forms an association with its
corresponding output vector. For each k integer and positive, the corresponding
association will be denoted as: (z*, y*¥). Associative memory M is represented by
a matrix whose ij-th component is m;; [4]. Memory M is generated from an a
priori finite set of known associations, called the fundamental set of associations.
If p is an index, the fundamental set is represented as: {(z*,y*) | £ = 1,2, ...,p}
with p as the cardinality of the set. The patterns that form the fundamental set
are called fundamental patterns. If it holds that z# = y* Vu € {1,2,...,p} M is
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Table 1. Alfa and Beta Operators.

a:AxA— B B:BxA— A
xly[  a(xy) xly] B(xy)
o[o 01 00[0 0
0]1 00 001 0
1/o 10 01/0 0
11 01 011 1
100 1
101 1

auto-associative, otherwise it is heteroassociative; in this case, it is possible to
establish that 3u € {1,2, ..., p} for which z# # y¥. If we consider the fundamental
set of patterns {(z*,y*) | p = 1,2,...,p} where n and m are the dimensions of
the input patterns and output patterns, respectively, it is said that z# € A",
A = {0,1} and y* € A™. Then the j-th component of an input pattern is
"‘-'.‘1“ € A. Analogously, the j-th component of an output pattern is represented as
Yy €A A distorted version of a pattern z* to be recuperated will be denoted
as Z*. If when feeding an unknown input pattern z* with w € o I I -
to an associative memory M, it happens that the output corresponds exactly to
the associated pattern y“, it is said that recuperation is perfect.

2 Alfa-Beta Associative Memories

Alfa-Beta Associative Memories mathematical foundations are based on two
binary operators: a and 3. Alfa operator is used during the learning phase while
Beta operator is used during the recalling phase. The mathematical properties
within these operators, allow the af8 associative memories to exhibit similar
characteristics to the binary version of the morphological associative memories,
in the sense of: learning capacity, type and amount of noise against which the
memory is robust, and the sufficient conditions for perfect recall (5] First, we
define set A = {0,1} and set B = {00,01,10}, so & and j operators can be
defined as in Table 1.

These two binary operators along with maximum (V) and minimum (A)
operators establish the mathematical tools around the Alfa-Beta model. The
definitions of o and B exposed in Table 1, imply that: a is increasing by the
left and decreasing by the right, B is increasing by the left and right, 3 is the
left inverse of a. According to the type of operator that is used during the
learning phase, two kinds of Alfa-Beta Associative Memories are obtained. If
maximum operator (V) is used, Alfa-Beta Associative Memory of type MAX
will be obtained, denoted as M; analogously, if minimum operator (A) is used,
Alfa-Beta Associative Memory of type min will be obtained, denoted as W [6]. In
any case, the fundamental input and output patterns are represented as follows:



FPGA Implementation of Alfa-Beta Associative Memories 29

:1:“1: zg
T2

zh=1 . |ean Yt = 2 leam
zh Ym

In order to understand how the learning and recalling phases are carried out,
some matrix operations definitions are required.

amax Operation: PrxyVaQrxn = | S]mxn » where f2 = Vi_; a(pix,gx;)
B max Operation: PpnxrVgQrxn = [fg] _ where fg. = Vi_; B(Dik, gk;)
amin Operation: Py, AaqQrxn = [fg]mm » where f& = AL_; a(Pik, gk;)
B min Operation: Ppyr AgQrxn = [fg] e’ where fi‘; = Ar=; B(Pik,qk;)

Whenever a column vector of dimension m is operated with a row vector of

dimension n, both operations V, and A,, are represented by @; consequently,
the following expression is valid:

YWVaz =y @zt = yA, 2.

If we consider the fundamental set of patterns {(=z*,9*)lp=1,2,...,p} then
the ij-th entry of the matrix y* @ (:r:")t is expressed as follows:

[y# @ (:c“)t] y = a(yf,:z:“,-‘).

2.1 Learning Phase

Find the adequate operators and a way to generate a matrix M that will store
the p associations of the fundamental set {(z',3?), (z2,1?), ..., (z7,3P)}, where
z' € A" and y* € A™ Vp € {1,2,...,p}.

Step 1. For each fundamental pattern association {(z*,y*) [p = 1,2, ..., p}, gen-
erate p matrices according to the following rule:

[ ® @]

mxn

Step 2. In order to obtain an Alfa-Beta Associative Memory of type MAX,
apply the binary M AX operator (V) according to the following rule:

M=Vvi_, [y“ ® (:z:“)']

Step 3. In order to obtain an Alfa-Beta Associative Memory of type min, apply
the binary min operator (A) according to the following rule:

W =N [3/" & (1‘")‘]
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Fig. 1. Alfa Unit

Consequently, the ij-th entry of an Alfa-Beta Associative Memory of type
MAX is given by the following expression:

vij = Vo a(yf, z5)

Analogously, the j-th entry of an Alfa-Beta Associative Memory of type min
is given by the following expression:

1/)1'_7' — AZ:la(y;"‘) :L‘;‘)

2.2 Recalling Phase

Find the adequate operators and sufficient conditions to obtain the fundamental
output pattern y*, when either the memory M or the memory W is operated

with the fundamental input pattern z*.

Step 1. A pattern z*, with w € {1,2,...,p}, is presented to the Alfa-Beta As-
sociative Memory, so z* is recalled according to one of the following rules.

Alfa-Beta Associative Memory of type MAX:
MAgz® = Ni—yB(vij z¥) = Nj=y {[Vim1e(i 25)] s 2y}
Alfa-Beta Associative Memory of type min:
W s 2% = VI B, %) = Vi, {[Aocsa(yl, 28] 29}
Without dependence on the Alfa-Beta Associative Memory type used through-
out the recalling phase, a column vector of dimension n will be obtained.

3 Implementation Details

As previously mentioned, the main goal of this paper is to derive an efficient
implementation of the Alfa-Beta Associative Memories targeted towards FPGAs.
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Fig. 3. Learning Phase Architecture

The Alfa operator implementation is shown in Figure 1, while the Beta op-
erator implementation is shown in Figure 2.

The proposed architecture works with a 50 MHz master clock, which implies
a 20ns period. As is it shown in Figure 3, the learning phase is implemented with
5 registers, 1 Alfa block, 1 M AX/min block and 2 external 10ns SRAM chips
(mounted on the same board), that allow 1MB of data storage. There are two
remarkable topics to be taken into consideration. The former concerns about the
amount of logic resources that are needed to implement the two binary operators
(Alfa and Beta). The latter results from the fact that most of the components
that constitute the learning phase are combinatorial circuits. Hence, it is possible
to read data from the external SRAM memory at the same time that a new bit is
shifted to the Alfa block. Therefore, it is possible to write back the result of the
M AX/min block to the external SRAM memory, during the same clock period.

As it is shown in Figure 4, the recalling phase is implemented with 4 registers,
1 Beta block, 1 min/M AX block and the same 2 external 10ns SRAM chips that
were used to store the fundamental associations during the learning phase. The
recalling phase is executed as follows. Firstly, Rs,, receives one data word from
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1 MB SRAM
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Fig. 4. Recalling Phase Architecture

the Alfa-Beta Associative Memory (stored in the 2 external 10ns SRAM chips).
Then, R; receives the unknown input pattern. Finally, R, stores the recalled

output pattern.

4 Numerical Results

Example 4.1. Let p = 5, n = 4, m = 4. Given the fundamental patterns

{=*y") | p =12, p}, obtain an Alfa-Beta Associative Memory. The
fundamental associations will be denoted as: {(z!,3%), (z2,%?), ..., (z°,9°)}.

1 (0 (0 0 1

1_{:l 2:2: O\ 3 — 1\ 4 = (1 5 0

e 0 1) "\0 =11
1 1 1 0 \1 )

1) 1) 1) (1 (1

1 1 2 0 31 P 0

Yemilo Y= 1.0 ) Y= 0 y5 =19

1) 1) 1) \0/ \1

Learning phase. Obtain the corresponding matrices My, Ms, ..., Ms, accord-

ing to step 1, indicated in section 2.1.

—_ O O O

©(1101) =

®(0001) =

(1121\

1121
0010
\1121
2221\
1110
1110

\ 2291




FPGA Implementation of Alfa-Beta Associative Memories 33

1 1211
g s o]0 _lo100
ve@®)=|,|le(1011)= BT
1 1211

According to step 2, an Alfa-Beta Associative Memory of type M AX denoted
by M, is obtained. Analogously, according to step 3, an Alfa-Beta Associative
Memory of type min denoted by W, is obtained.

32:03 i I
la2122] _|o100
M=12211 » W=1loo010
2221 1011

Recalling phase. Obtain the corresponding output patterns, by performing
the operations M Ag z# , Vu € {1,2,...,p} as stated in section 2.2. Due to

paper space limitations, only the Alfa-Beta M AX type recalling phase results
are shown.

2222 1 1
2122 1 1
1 e s ek
el Cr T e T s T
2221 1 1
2222 0 1
2122 0 0
2 s _— a2
MOgz"=1,9511]|88|o|=|0]|=¥
2221 1 1
2222 0 1
2122 1 1
Si it s e I
MBga"=19911|2e|1|=|1]|=¥
2221 1 1
2222 0 1
2122 1 1
4 __ - — .4
Mbpz =|y591 88| gl=]0]|=%
2221 0 0
2222 1 1
2122 0 0
5 = =5
Mepe=tggrg (D8] 1| =
2221 1 1

The reader can easily verify that the Alfa-Beta min type recalling phase also
recalls the whole fundamental set of patterns perfectly.
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Fig. 5. Learning Phase
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Fig. 6. Recalling Phase

5 Experimental Results

The experimental phase was carried out in two stages. In the first one, the same
fundamental set of patterns that was presented in section 4, was downloaded
to the proposed architecture. The performance results are shown in Figure 5
and Figure 6. The learning phase is executed in 2.5 us and the recalling phase
is executed in 2 us. As expected, the entire fundamental set of patterns was

perfectly recalled.

; In order to estimate how the Alfa-Beta Associative Memory model performs
with high dimensional data, 20 binary images (Figure 7 and Figure 8) were
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Fig. 7. Fundamental Input Patterns
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Fig. 8. Fundamental Output Patterns

used as fundamental patterns. Each one of these images is 40 by 40 pixels,
which produces a 1600 bits pattern; accordingly, each pattern association results
in a 640 Kbytes matrix. The experimental phase was carried out as follows:
after the register initialization process was concluded, the first association was
learned and recalled. Subsequently, the first and second associations were learned
and recalled; after that, the same procedure continued in a consecutive manner
until the fundamental set of patterns was completely learned and recalled. The
above mentioned procedure was executed 100 times, each time changing the
fundamental associations randomly. The averaged recalling results are shown in
Table 2. A relevant thing to mention about the recalling criterion that was used
along the experimental phase is that, in this case, perfect recall means that all
of the 1600 bits were exactly recovered. Particularly, outstanding results were
achieved by using the Alfa-Beta min type recall (the whole fundamental set of
patterns was perfectly recalled).

6 Conclusions and Ongoing Research

In this paper, we introduced a simple but efficient implementation of the Alfa-
Beta Associative Memories targeted towards FPGAs that overcomes a serious
challenge in pattern recognition tasks (bottle-neck problems due to high dimen-
sional data). A relevant thing to mention is that after a fundamental pattern
is downloaded to the proposed architecture, each bit is learned in 90 ns, which
fulfills one of the main purposes of this paper. Moreover, if the learning rate
is known, it is possible to estimate the learning phase duration even with high
dimensional fundamental patterns. Usually, this situation takes place when the
fundamental patterns are RGB images. It is worth to mention that the pro-
posed architecture can be easily adapted to work as an Alfa-Beta bi-directional
associative memory.
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Table 2. Fundamental set recalling results.

123456788910
aB MAX 1234444311
aBmin 12345678910

Currently, we are investigating how to use the proposed architecture for fea-
ture sclection in RGB images and mixed noise variants. We are also working
towards a parallel implementation of the learning phase, based on recent math-

ematical results.
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